Lipopolysaccharide internalization activates endotoxin-dependent signal transduction in cardiomyocytes.

نویسندگان

  • D B Cowan
  • S Noria
  • C Stamm
  • L M Garcia
  • D N Poutias
  • P J del Nido
  • F X McGowan
چکیده

We tested the hypothesis that bacterial lipopolysaccharide (LPS) must be internalized to facilitate endotoxin-dependent signal activation in cardiac myocytes. Fluorescently labeled LPS was used to treat primary cardiomyocyte cultures, perfused heart preparations, and the RAW264.7 macrophage cell line. Using confocal microscopy and spectrofluorometry, we found that LPS was rapidly internalized in cardiomyocyte cultures and Langendorff-perfused hearts. Although LPS uptake was also observed in macrophages, only a fraction of these cells were found to internalize endotoxin to the extent seen in cardiomyocytes. Colocalization experiments with organelle or structure-specific fluorophores showed that LPS was concentrated in the Golgi apparatus, lysosomes, and sarcomeres. Similar intracellular localization was demonstrated in cardiomyocytes by transmission electron microscopy using gold-labeled LPS. The internalization of LPS was dependent on endosomal trafficking, because an inhibitor of microfilament reorganization prevented uptake in both cardiomyocytes and whole hearts. Inhibition of endocytosis specifically restricted early activation of extracellular signal-regulated kinase proteins and nuclear factor-kappaB as well as later tumor necrosis factor-alpha production and inducible nitric oxide synthase expression. In conclusion, we have demonstrated that bacterial endotoxin is internalized and transported to specific intracellular sites in heart cells and that these events are obligatory for activation of LPS-dependent signal transduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Disabled-2 is a negative immune regulator of lipopolysaccharide-stimulated Toll-like receptor 4 internalization and signaling

Toll-like receptor 4 (TLR4) plays a pivotal role in the host response to lipopolysaccharide (LPS), a major cell wall component of Gram-negative bacteria. Here, we elucidated whether the endocytic adaptor protein Disabled-2 (Dab2), which is abundantly expressed in macrophages, plays a role in LPS-stimulated TLR4 signaling and trafficking. Molecular analysis and transcriptome profiling of RAW264....

متن کامل

Buckwheat Rutin Inhibits AngII-induced Cardiomyocyte Hypertrophy via Blockade of CaN-dependent Signal Pathway

Buckwheat rutin has been found to be able to inhibit angiotensin II (AngII) - induced hypertrophy in cultured neonatal rat cardiomyocytes, but the mechanism remains uncertain. In this study, myocardial hypertrophy model was made by adding AngII to the medium of cardiac myocytes of neonatal rats, meanwhile, different concentrations of buckwheat rutin were applied to observe their effects. Intrac...

متن کامل

Endotoxin interactions with lipopolysaccharide-responsive cells.

Recent work has identified two proteins that work together to enable many cell types to respond to endotoxin. These two proteins, lipopolysaccharide (LPS) binding protein (LBP) and CD14, also participate in cellular internalization of endotoxin, which may occur independently of cellular activation. Current work with antibodies to LBP and CD14 as well as "knockout" mice in the context of LPS-ini...

متن کامل

Isoprotrenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin.

Signal-Regulated Protein Kinases in Cardiomyocytes Through Calcineurin To the Editor: Zou et al1 reported recently that isoproterenol activates extracellular signal-regulated protein kinases (ERK) in cardiomyocytes through calcineurin. The results mediated by -adrenergic receptors ( -AR) were convincing in neonatal cardiomyocytes but might not be applicable to adult cardiomyocytes, which underg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 88 5  شماره 

صفحات  -

تاریخ انتشار 2001